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Abstract A new pruning method for interval branch and bound algorithms is pre-
sented.Inreliableglobaloptimizationmethodsthereareseveralapproachestomakethe
algorithms faster. In minimization problems, interval B&B methods use a good upper
boundofthefunctionattheglobalminimumandgoodlowerboundsofthefunctionatthe
subproblemstodiscardmostofthem,buttheyneedefficientpruningmethodstodiscard
regionsofthesubproblemsthatdonotcontainglobalminimizerpoints.Thenewpruning
method presented here is based on the application of derivative information from the
Baumann point. Numerical results were obtained by incorporating this new technique
into a basic Interval B&B Algorithm in order to evaluate the achieved improvements.

Keywords Interval arithmetic · Branch-and-bound method · Global optimization ·
Pruning test

1 Introduction

The problem of finding the global minimum f ∗ of a real valued n-dimensional con-
tinuously differentiable function f : S → R, S ⊂ R

n, and the corresponding set S∗ of
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global minimizers is considered, i.e.,

f ∗ = f (s∗) = min
s∈S

f (s), s∗ ∈ S∗. (1)

The following notation is used. Real numbers are denoted by x, y, . . . and com-
pact intervals by X = [xL, xU], Y = [yL, yU], . . ., where xL = min{x ∈ X} and
xU = max{x ∈ X} are the lower and upper bounds of X, respectively. The set
of compact intervals is denoted by I := {[a, b] | a, b ∈ R, a ≤ b}. The notation
x = (x1, . . . , xn)T , xi ∈ R and X = (X1, . . . , Xn)T , Xi ∈ I (i = 1, . . . , n) is used
for real and interval vectors, respectively. The set of n-dimensional interval vec-
tors (also called boxes) is denoted by I

n. The width of the interval X is defined by
w(X) = xU − xL, if X ∈ I, and w(X) = maxi=1,...,n w(Xi), if X ∈ I

n. The midpoint
of the interval X is defined by mid(X) = (xL + xU)/2, for one-dimensional intervals,
and mid(X) = (mid(X1), mid(X2), . . . , mid(Xn))T , for n-dimensional intervals. Let
f : Y ⊆ R

n → R be a continuous function, and I(Y) = {X | X ∈ I
n, X ⊆ Y}. The

function F : I(Y) ⊆ I
n → I is an inclusion function of f , if for every X ∈ I(Y) and

x ∈ X, f (x) ∈ F(X), i.e. f (X) = {f (x) |x ∈ X} ⊆ F(X). Let X be a box and c ∈ X any
point of it. If G(X), i.e. an inclusion function of the gradient vector g(X) is known,
then the centered form is defined as

Fc(X) = F(c) + G(X)(X − c).

Usually we use the midpoint (c = mid(X)), but in general, only c ∈ X is assumed.
One interesting choice for c is the Baumann point (b) [1], that is defined by

bi =

⎧
⎪⎪⎨

⎪⎪⎩

gU
i xL

i − gL
i xU

i

gU
i − gL

i
, if gL

i < 0 < gU
i

xU
i if gU

i ≤ 0
xL

i if gL
i ≥ 0

i = 1, . . . , n, (2)

where the gradient G(X) = ([gL
1 , gU

1 ], . . . , [gL
n, gU

n ]). Baumann proved that Fc
L(X) ≤

Fb
L(X), ∀c ∈ X.
In those cases where the objective function f (x) is given by a formula, it is possible

to use an interval B&B approach to solve problem (1) (see [9,12,13,15]). A general
interval GO (IGO) algorithm based on this approach is shown in Algorithm 1.

Algorithm 1 A general interval B&B GO algorithm
Funct IGO(S, f )

1. Set the working list L := {S} and the final list Q := {}
2. while ( L 	= {} )
3. Select an interval X from L Selection rule
4. Compute a lower bound for f (X) Bounding rule
5. if X cannot be eliminated Elimination rule
6. Divide X into Xj, j = 1, . . . , p, subintervals Division rule
7. for j=1,…, p
8. if Xj satisfies the termination criterion Termination rule
9. Store Xj in Q

10. else
11. Store Xj in L
12. return Q
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An overview on the theory and the history of the rules of this algorithm can be
found, for example, in [9]. Of course, every particular realization of Algorithm 1
depends on the available information on the objective function f (x). In this paper it is
supposed that inclusion functions can be evaluated for f (x) and for its first derivative,
g(x), over all X ∈ I(S). When this information is available, the rules of the traditional
realization of Algorithm 1 can be written more precisely. Below we describe a Mul-
tidimensional Interval Global Optimization algorithm (MIGO) which is frequently
used to solve problem (1) (see [9]).

Selection rule: Among all the intervals Xj stored in the working list L, select an
interval X such that FL(X) = min{FL(Xj) : Xj ∈ L}.

Bounding rule: The fundamental theorem of interval arithmetic provides a natu-
ral and rigorous way to compute an inclusion function. In the present study the
inclusion function F of the objective function f is available by the naive interval
arithmetic and the centered form [6,9]. The interval f (X) is bounded by the interval
F(X) ∩ Fc(X), i.e. the lower bound for f (X) is max{FL(X), Fc

L(X)}.
Elimination rules: Common elimination rules are the following:

Midpoint or Cutoff test: Every interval X is rejected if FL(X) > f̃ , where f̃
is the best known upper bound of f ∗. The value of f̃ is usually updated by
FU(c), generally using c = mid(X).

Monotonicity test: If for an interval X the condition 0 /∈ G(X) is fulfilled, then
this means that the interval X does not contain any minimizer point (the box
is rejected) or the minimizer points are on the border of the search region
(the box is reduced).

Division rule: Usually two subintervals are generated by bisection using mid(X) as
the subdivision point on direction k, where k is a coordinate such that w(Xk) =
maxi=1,...,n w(Xi).

Termination rule: A parameter ε determines the desired accuracy of the solution.
Therefore, intervals X with w(X) ≤ ε, are moved to the final list Q. Other termi-
nation criteria can be found in [15].

In this paper, a new elimination rule based on the application of the gradient infor-
mation from the Baumann point is proposed. It is in some sense the generalization
of the method in [11]. Section 2 shows the idea for the two-dimensional case, while
Section 3 extends the theory to the n-dimensional case. Section 4 describes the method
algorithmically and Section 5 shows the numerical results and conclusions and finally
Section 6 gives a summary.

2 The two-dimensional problem

Before explaining the general method, let us demonstrate it on a two-dimensional
problem. Let us examine the visualization of the centered form for a box X =
(X1, X2). We suppose that 0 ∈ G(X) = ([gL

1(X), gU
1 (X)], [gL

2(X), gU
2 (X)]) (abbrevi-

ated to ([gL
1 , gU

1 ], [gL
2 , gU

2 ])), because otherwise the function is monotonic in the box
and it could be discarded or reduced. A “tent” can be drawn from the point (c, FL(c))
using the bounds of the derivatives (see Fig. 1(a)). It is easy to see that the function
has to be above the tent. If we have a good upper bound on the global minimum (f̃ )
which is smaller than FL(c), we know that the minimum cannot be attained in the
region defined by the intersection of the tent and the plane f̃ . This region is drawn in
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(b)(a)

Fig. 1 The two-dimensional case

dark(red) in Fig. 1(b), and will be denoted by PR (Pruneable Region). The use of this
pruneable region was not suggested in [16] because the edges of PR are not parallel
to the coordinate axes and the division of X by rejecting part of PR would generate a
lot of boxes. Here it is shown that PR is still of interest.

PR can be defined by its vertices:

vU
1 =

{
(x1, c2) | f̃ = FL(c) + gL

1(x1 − c1)
}

=
(

c1 +
(

f̃ − FL(c)
)

/gL
1 , c2

)
, (3)

vL
1 =

(
c1 +

(
f̃ − FL(c)

)
/gU

1 , c2

)
, (4)

vU
2 =

(
c1, c2 +

(
f̃ − FL(c)

)
/gL

2

)
, (5)

vL
2 =

(
c1, c2 +

(
f̃ − FL(c)

)
/gU

2

)
, (6)

if gL
i 	= 0 and gU

i 	= 0, i ∈ {1, 2}. Otherwise vL
i = −∞ or vU

i = ∞ for the appropriate
vertex, as the limits of the fractions suggest. Let us introduce the following notation
to simplify the formulas.

prU
i = f̃ − FL(c)

gL
i

, prL
i = f̃ − FL(c)

gU
i

, i = 1, 2. (7)

Thus vL
1 = (c1 +prL

1 , c2), vU
1 = (c1 +prU

1 , c2) and vL
2 = (c1, c2 +prL

2), vU
2 = (c1, c2 +prU

2 ).
Since our interval B&B algorithm works with boxes, we cannot use other shapes

(different from boxes) to divide the non-rejected area, i.e. the remaining region can-
not be approximated in the way shown on the left hand side of Fig. 2. On the other
hand, if we approximate the non-rejected regions by boxes, too many boxes can be
generated, and/or only a small part of the pruneable region can be discarded (see
Fig. 2). In general, more than four generated subboxes are not desired because the
computational cost of the algorithm can increase accordingly.

One possible goal of the pruning is to obtain the largest box to be removed from
the original box. This can be done by computing the largest rectangle in the triangle
defined by its vertices vU

1 , vL
2 , c (see Fig. 3). The area of the rectangle is A = a · b,

where b = prU
2 − prU

2 /prU
1 a. Thus, it can be computed by maximizing A with respect

to a and b. The maximal area is prU
1 prU

2 /4 with a = prU
1 /2 and b = prU

2 /2. From the
above result one can see that the same can be obtained for all of the four triangles.
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Fig. 2 Examples of the different cutting choices

Fig. 3 The largest box which can be cut from PR

Fortunately all the rectangles share one edge, thus the resulting box can be given by
c + ([prL

1/2, prU
1 /2], [prL

2/2, prU
2 /2]). (Note that prL

1 and prL
2 are negative.)

Sometimes we can find better choices than the largest box in the pruneable region
to be pruned, since the latter is not always inside the box X. To calculate the pruneable
box, the only important thing is the intersection between the pruneable region and the
original box, independently of their position in the coordinate system. So, to obtain
easier formulas and notation let us center the whole problem at the point c, i.e. let us
change c to be the origin. Thus, we introduce the following notation.

OB (Original Box): OB = X − c,
BPR (Box containing PR): BPR = ([prL

1 , prU
1 ], [prL

2 , prU
2 ]),

PB (Pruneable Box): PB = ([pbL
1 , pbU

1 ], [pbL
2 , pbU

2 ]),
(8)

where BPR is the smallest box which contains the pruneable region (PR) (see Fig. 4).
In our new notation the Centered Pruneable Box (CPB) is

CPB = ([prL
1/2, prU

1 /2], [prL
2/2, prU

2 /2]) (9)

and the area of the CPB is

A(CPB) =
(

prU
1

2
− prL

1

2

) (
prU

2

2
− prL

2

2

)

= 1
4

A(BPR),

i.e. half of the area of PR, which is half of the area of BPR.
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Fig. 4 The new notation for the easier formulation

2.1 Shifting the CPB (Centered Pruneable Box)

As it can be seen in Fig. 5, sometimes it is better to shift the CPB to the edge of
OB. This can improve the method by reducing the number of the generated subboxes
at the cost of the reduction of the rejected area compared to the area of CPB. To
distinguish the centered pruneable box (CPB) from the shifted pruneable box, the
latter will be denoted by SPB. In the cases when OB ∩ CPB 	= CPB, the area of SPB
can be larger than the area of CPB ∩ OB (see the third case in Fig. 5).

Let us suppose that we want to shift CPB to the upper side of OB, as SPBobU
2

in

Fig. 6. This is possible only if obU
2 < prU

2 , and therefore spbU
2 = obU

2 can be obtained.
We only have to determine the box coordinates (spbL

1 , spbU
1 , spbL

2 , spbU
2 ) (note that

spbL
1 , spbL

2 are negative since the origin is inside the box). It is easy to see that the
corner (spbU

1 , spbU
2 ) is on the edge of the pruneable region, iff

1 = spbU
1

prU
1

+ spbU
2

prU
2

.

We know that spbU
2 = obU

2 , thus spbU
1 = prU

1

(

1 − obU
2

prU
2

)

. For the other corners

1 = spbU
1

prU
1

+ spbL
2

prL
2

, 1 = spbL
1

prL
1

+ spbU
2

prU
2

, and 1 = spbL
1

prL
1

+ spbL
2

prL
2

have to hold, thus

spbL
1 = prL

1

(

1 − obU
2

prU
2

)

, spbL
2 = prL

2
obU

2

prU
2

.

Fig. 5 Shifting the pruneable box to an edge of OB
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Fig. 6 Shifting example

Now we have a new problem to solve: which side to choose for shifting, and more-
over whether it is worth shifting, or not. Both questions can be answered by comparing
the areas that can be pruned in each case.

The areas of the boxes—supposing that the resulting SPB is inside of the original
one (OB)—can be computed as

A(SPBobU
2
) =

(

prU
1

(

1 − obU
2

prU
2

)

− prL
1

(

1 − obU
2

prU
2

)) (

obU
2 − prL

2
obU

2

prU
2

)

= (
prU

1 − prL
1

)
(

1 − obU
2

prU
2

)
obU

2

prU
2

(
prU

2 − prL
2
)

=
(

1 − obU
2

prU
2

)
obU

2

prU
2

A(BPR) (10)

that is, in general

A(SPBobI
i
) =

(

1 − obI
i

prI
i

)
obI

i

prI
i

A(BPR), i = 1, 2, I = L, U. (11)

If an SPB is inside the original box then the shifted area only depends on the value
obI

i
prI

i
, i = 1, 2, I = L, U, obtaining a larger area if it is nearer 1/2. If it equals to 1/2 we

obtain that A(SPBobI
i
) = A(CPB), which also means that SPBobI

i
= CPB.

These equations show that knowing the vector
(

obU
1

prU
1

, obL
1

prL
1

, obU
2

prU
2

, obL
2

prL
2

)

one can choose

the largest Shifted Pruneable Box. If the largest SPB is inside the original box one
should only decide to prune this or the CPB. The other cases, when one or more
corners of the box are inside the pruneable region, do not differ too much, but those
have to be treated differently. This would lead to a case analysis that is out of the
scope of this work and cannot be extended for the multidimensional case easily.
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2.2 Simplification using the Baumann point

In this section, we will see that the use of the Baumann point [1] instead of the center
c simplifies our computations, avoiding the previous case analysis.

Theorem 1 Consider a given differentiable function f : R
2 → R, its inclusion function

F and the inclusion function of its derivative G over a given box X. The pruneable
region defined by its vertices, as in equations (3) to (6), centered in the Baumann point
(i.e. c = b) include either all the corners of X or none of them.

Proof First we show that in the case when one corner is exactly on the edge of the
pruneable region, the other corners are also on the edges of the pruneable region (see
Fig. 7). That is, if xL is such that

1 = xL
1 − b1

prL
1

+ xL
2 − b2

prL
2

, (12)

then

1 = xU
1 − b1

prU
1

+ xL
2 − b2

prL
2

, 1 = xL
1 − b1

prL
1

+ xU
2 − b2

prU
2

, 1 = xU
1 − b1

prU
1

+ xU
2 − b2

prU
2

. (13)

It is easy to see that Eq. (12) and (13) hold if and only if

xU
1 − b1

prU
1

= xL
1 − b1

prL
1

,
xU

2 − b2

prU
2

= xL
2 − b2

prL
2

. (14)

Recalling the definitions of prU
i , prL

i , i = 1, 2 (see (7)) and b1, b2 (see (2)), the equations
are

xU
i − gU

i xL
i −gL

i xU
i

gU
i −gL

i

f̃−FL(b)

gL
i

=
xL

i − gU
i xL

i −gL
i xU

i
gU

i −gL
i

f̃−FL(b)

gU
i

, i = 1, 2

Fig. 7 Example of the case when Baumann point is used
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that can be simplified to

gL
i xU

i − gL
i

gU
i xL

i − gL
i xU

i

gU
i − gL

i
= gU

i xL
i − gU

i
gU

i xL
i − gL

i xU
i

gU
i − gL

i
, i = 1, 2,

and finally to

gL
i xU

i − gU
i xL

i = −gU
i (gU

i xL
i − gL

i xU
i ) + gL

i (gU
i xL

i − gL
i xU

i )

gU
i − gL

i
, i = 1, 2,

which reduces to an identity. Consequently, the Eq. (14) are always true. Thus, if we
change the equality in (12) to inequality, then inequality will occur in (13), which
proves the theorem. �
Remark 1 The theorem holds also if gL

i = 0 or gU
i = 0 for i ∈ {1, 2}. In this case as

prU
i = ∞ and bi = xL

i or prL
i = −∞ and bi = xU

i ,

xU
i − bi

prU
i

= xL
i − bi

prL
i

= 0.

Corollary 1 Since ∀i xU
i −bi

prU
i

= xL
i −bi

prL
i

, it can be deduced easily that the shifted pruneable

box SPBobU
i

is exactly the same as SPBobL
i

. Thus, it can be denoted as SPBi. There-
fore, after shifting there will be only two newly generated boxes (the enclosures of the
non-rejected areas), and only the better shifting direction has to be determined.

Remark 2 The above results suggest the notation of the Shifting Factor

sfi = xU
i − bi

prU
i

(

= xL
i − bi

prL
i

)

, i.e. sfi = obU
i

prU
i

(

= obL
i

prL
i

)

, i = 1, 2,

and the Opposite Shifting Factor

osfi = 1 − xU
i − bi

prU
i

, i.e. osfi = 1 − obU
i

prU
i

, i = 1, 2.

Therefore, A(SPBi) = sfiosfiA(BPR).

Theorem 2 If CPB 	⊆ OB and OB 	⊆ CPB, then there exists a SPB such that A(SPB) >

A(CPB ∩ OB).

Proof If CPB 	⊆ OB, then there exists an i ∈ {1, 2} such that sfi < 1/2, i.e. in the ith
direction cpbU

i > obU
i and cpbL

i < obL
i . As OB 	⊆ CPB, for the other direction j 	= i,

cpbU
j < obU

j and cpbL
j > obL

j . The area of the region that can be pruned using the
CPB is

A(CPB ∩ OB) = 1
2

obU
i − obL

i

prU
i − prL

i
A(BPR),

while the area of SPBi is

A(SPBi) = sfiosfiA(BPR).
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One can easily see that

A(CPB ∩ OB) < A(SPBi) ⇐⇒ 1
2

obU
i − obL

i

prU
i − prL

i
< sfiosfi

⇐⇒ 1
sfi

1
2

obU
i − obL

i

prU
i − prL

i
< osfi ⇐⇒ 1

2

obU
i

sfi
− obL

i
sfi

prU
i − prL

i
< osfi

⇐⇒ 1
2

prU
i − prL

i

prU
i − prL

i
< osfi ⇐⇒ 1

2
< osfi

which is assured by sfi < 1/2. �
Remark 3 In Theorem 2 if SPBi 	⊆ OB, then OB ⊂ SPBi. Therefore, the whole box
can be deleted. It also means that although the computed area (A(SPBi)) is larger
than the possible pruned one, we prune the maximal area, A(CPB∩OB) < A(OB) =
A(SPBi ∩ OB) < A(SPBi).

The advantages of the usage of the Baumann point are that it makes our computa-
tion easier, and it equilibrates the pruneable region over the box.

3 The n-dimensional case

To generalize the above results for the multi-dimensional case, let us suppose that
c = (c1, c2, . . . , cn) is an arbitrary point of the n-dimensional box X. Before any
computations are made, let us center the problem at the point c as we did in the
two-dimensional case. Thus, we will use the same notation:

OB (Original Box): OB = X − c, (15)

It is easy to see, that the vertices of the pruneable region are

vL
i = (0, . . . , 0, prL

i , 0, . . . , 0), (16)

vU
i = (0, . . . , 0, prU

i , 0, . . . , 0), i = 1, . . . , n,

where

prU
i = f̃ − FL(c)

gL
i

, prL
i = f̃ − FL(c)

gU
i

, i = 1, . . . , n.

From (16) we know that in the three-dimensional case the shape of PR is as it is shown
in Fig. 8. To see the properties of this body, let us take a little side-track into geometry.
Let us first introduce the notion of orthopeder which appears to be a new class of
geometrical objects.

Definition 1 An n-dimensional polytope is called orthopeder, if the diagonals inter-
sect in one point and are orthogonal to each other.

Proposition 1 The PR defined by its vertices (16) is an orthopeder.

Proof The diagonals of the PR are the lines between vL
i , vU

i , i = 1, . . . , n, i.e. between
the non-adjacent vertices (16). As all the lines pass through the origin, this is the
intersection point. The ith diagonal vL

i , vU
i is parallel to the ith axis for all i, thus all the

diagonals are orthogonal. �
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Fig. 8 The shape of PR in the three-dimensional case

Definition 2 The cross polytope is the regular polytope in n dimensions corresponding
to the convex hull of the points formed by permuting the coordinates (±1, 0, 0, . . . , 0).

An orthopeder is a generalization of a cross polytope, with different scaling on all
directions. It is easy to see, that the corresponding scaling vectors are —PRL and PRU.
The cross polytope is a dual of an n-dimensional hypercube, i.e. its vertices are the
centers of the faces of the hypercube. As it is known in geometry, in the cross polytope
the largest hyperrectangle is its dual, i.e. the hypercube which has its vertices on the
center of the faces of the cross polytope.

Proposition 2 It is trivial that in an orthopeder (a scaled cross polytope) the largest
hyperrectangle is the rescaled hypercube with the same scale vectors.

Corollary 2 The largest box in the orthopeder PR defined by its vertices (16) is the
Centered Pruneable Box (CPB),

CPB = ([
prL

1/n, prU
1 /n,

]
, . . . ,

[
prL

n/n, prU
n /n,

])
.

Corollary 3 The volume of CPB is

V(CPB) =
∏

i=1,...,n

prU
i − prL

i

n
= 1

nn V(BPR).

Theorem 3 Let f : R
n → R be a given differentiable function, F its inclusion function

and G the inclusion function of its derivative over a given box X. The pruneable region
defined by its vertices as in (16) centered in the Baumann point (i.e. c = b) includes
either all the corners of X or none of them.

Proof It can be proved in the same way like Theorem 1. We first prove that when
one corner of X is exactly on one face of the pruneable region, the other corners
are also on the corresponding faces of the pruneable region. For this we will use
the notation Ji = (Ji

1, . . . , Ji
n); Ji

k ∈ {L, U}, k = 1, . . . , n, where the ith vertex of X is

wi = (x
Ji
1

1 , . . . , xJi
n

n ).
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If wi is such that

1 =
n∑

k=1

x
Ji
k

k − bk

pr
Ji
k

k

, (17)

then

1 =
n∑

k=1

x
J
j
k

k − bk

pr
J
j
k

k

, ∀j = 1, . . . , 2n. (18)

It is easy to see that equations (18) can hold iff

x
Ji
k

k − bk

pr
Ji
k

k

= x
J
j
k

k − bk

pr
J
j
k

k

∀j = 1, . . . , 2n; k = 1, . . . , n,

i.e.

xU
k − bk

prU
k

= xL
k − bk

prL
k

, k = 1, . . . , n. (19)

As the Baumann point is defined piecewise, the proof of Eq. (19) does not differ from
the demonstration of Eq. (14) which appears in the proof of Theorem 1.

Equations (19) are always true. Thus, changing the equality in (17) to inequality,
the same inequality change occurs in (18). It means that when one vertex of X is
inside (or outside) PR, the other vertices are also inside (or outside), which proves
the theorem. �
3.1 Shifting the n-dimensional CPB

When CPB is inside OB and CPB is pruned, the number of generated boxes is 2n. If
n > 3 the performance of the algorithm can decrease because more boxes have to be
evaluated. Therefore, it is important to find the best direction(s) to shift.

To choose the best PB, we are going to construct a simple and powerful method
that determines the SPB with the largest volume/fewer new boxes index. We already
know that using the Baumann point the equations

obU
i

prU
i

= obL
i

prL
i

, i = 1, . . . , n

hold (which are equivalent to (19)). In the following formulas these values will appear
many times, thus, let us introduce the notation of Shifting Factor (sfi) and Opposite
Shifting Factor (osfi) as we did in the 2D case

sfi = obU
i

prU
i

= obL
i

prL
i

, osfi = 1 − sfi, i = 1, . . . , n,

Shifting in the dimension i is possible only if sfi < 1 (osfi > 0), i.e. when obL
i > prL

i
and obU

i < prU
i .

The corner (spbU
1 , . . . , spbU

n ) is on the face of the pruneable region, iff

1 = spbU
1

prU
1

+ spbU
2

prU
2

+ · · · + spbU
n

prU
n

.
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Let us suppose that spbU
j = obU

j and so spbL
j = obL

j , i.e. we shift in the jth dimension.
Therefore, if the other coordinates of CPB have to be scaled with the same factor r,

i.e. spbI
i = r · cpbI

i = r prU
i

n , i = 1, . . . , n, i 	= j, then

1 = obU
j

prU
j

+
∑

i=1,...,n
i	=j

r
prU

i

n
prU

i
, r = n

n − 1

(
1 − sfj

)
= n

n − 1
osfj,

spbI
i = prI

i

n − 1
osfj, i = 1, . . . , n I = L, U.

Thus, if SPBj is inside OB, its volume can be computed as

V(SPBj) =
(

obU
j − obL

j

) ∏

i=1,...,n
i	=j

(
prU

i

n − 1
osfj − prL

i

n − 1
osfj

)

=
(

obU
j − prL

j

prU
j

obU
j

) (
n

n − 1
osfj

)n−1 ∏

i=1,...,n
i	=j

prU
i − prL

i

n

= n
(

n
n − 1

)n−1 obU
j

prU
j

osf n−1
j

∏

i=1,...,n

prU
i − prL

i

n

= nn

(n − 1)n−1
sfj osf n−1

j V(CPB).

One can see, that the nearer sfj is 1/n, the greater the volume is. It also implies
that knowing the vector (sf1, . . . , sfn) we can easily choose the best direction to
shift.

In some cases it is possible to shift in several dimensions. To shift in j1, . . . , jk ∈
{1, . . . , n} dimensions, we generalize the notation of the Opposite Shifting Factor:
osfj1,...,jk = 1 − ∑

i=j1,...jk sfi. Shifting is possible only if osfj1,...,jk > 0. Thus, we can
compute the coordinates of the SPBj1,...,jk in the following way:

1 =
∑

i=j1,...jk

obU
i

prU
i

+
∑

i=1,...,n
i	=j1,...,jk

r
prU

i

n
prU

i
,

r = n
n − k

⎛

⎝1 −
∑

i=j1,...jk

sfi

⎞

⎠ = n
n − k

osfj1,...,jk ,

spbI
i = prI

i

n − k
osfj1,...,jk , i = 1, . . . , n I = L, U. (20)
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The volume of SPBj1,...,jk if it is inside OB is the following

V(SPBj1,...,jk)

=
∏

i=j1,...jk

(
obU

i − obL
i
) ∏

i=1,...,n
i	=j1,...,jk

(
prU

i

n − k
osfj1,...,jk − prL

i

n − k
osfj1,...,jk

)

=
∏

i=j1,...,jk

(

obU
i − prL

i

prU
i

obU
i

) (
n

n − k
osfj1,...,jk

)n−k ∏

i=1,...,n
i	=j1,...,jk

prU
i − prL

i

n

= nk
∏

i=j1,...,jk

obU
i

prU
i

(
n

n − k

)n−k

osf n−k
j1,...,jk

∏

i=1,...,n

(
prU

i − prL
i
)
/n

= nn

(n − k)n−k

⎛

⎝
∏

i=j1,...,jk

sfi

⎞

⎠ osf n−k
j1,...,jk

V(CPB).

Remark 4 If we have the volume for SPB, shifted in the dimensions j1, . . . , jk−1 ∈
{1, . . . , n}, and we want to shift it in one more dimension, jk ∈ {1, . . . , n} as well, the
new volume can be computed from the known V(SPBj1,...,jk−1) in the following way:

V(SPBj1,...,jk) = sfjk

(n − k + 1)n−k+1

(n − k)n−k

osf n−k
j1,...,jk

osf n−k+1
j1,...,jk−1

V(SPBj1,...,jk−1).

Similarly to Theorem 2, Theorem 4 shows that if CPB is not inside OB we can
always obtain an SPB with larger volume than CPB ∩ OB.

Theorem 4 Let us suppose CPB 	⊆ OB in the dimensions j1, . . . , jk ∈ {1, . . . , n}, (k <

n), i.e. obU
i < cpbU

i and obL
i > cpbL

i for all i ∈ {j1, . . . , jk}, but not for i ∈ {1, . . . , n} \
{j1, . . . , jk}. Then V(SPBj1 ∩OB) > V(CPB∩OB), and V(SPBj1,...,jl ) > V(SPBj1,...,jl−1 ∩
OB), l ≤ k.

Proof First we will prove that V(SPBj1 ∩OB) > V(CPB∩OB). From the assumptions
one can obtain that sfj1 < 1/n, and so osfj1 > (n − 1)/n.

The volume of the region which can be pruned using CPB is

V(CPB ∩ OB) = 1
nn−k

∏

i=j1,...,jk

obU
i − obL

i

prU
i − prL

i
V(BPR).

The volume of the region which can be pruned using SPBj1 is

V(SPBj1 ∩ OB) =
∏

i=1,...,n
i	=j1,...,jk

osfj1

n − 1

(
prU

i − prL
i
) ∏

i=j1,...,jk

(obU
i − obL

i )

= osf n−k
j1

(n − 1)n−k

∏

i=j1,...,jk

obU
i − obL

i

prU
i − prL

i
V(BPR).
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Thus,

V(CPB ∩ OB) < V(SPBj1 ∩ OB) ⇐⇒ 1
nn−k

<
1

(n − 1)n−k
osf n−k

j1

⇐⇒
(

n − 1
n

)n−k

< osf n−k
j1

⇐⇒ n − 1
n

< osfj1 ,

what is assured by sfj1 < 1/n.
Let us suppose now, that we have already shifted in j1, . . . , jl−1 directions, but

SPBj1,...,jl−1 	⊆ OB. We know that

V(SPBj1,...,jl ∩ OB) = osf n−k
j1,...,jl

(n − l)n−k

∏

i=j1,...,jk

obU
i − obL

i

prU
i − prL

i
V(BPR).

V(SPBj1,...,jl−1 ∩ OB) < V(SPBj1,...,jl ∩ OB)

⇐⇒
osf n−k

j1,...,jl−1

(n − l + 1)n−k
<

osf n−k
j1,...,jl

(n − l)n−k

⇐⇒ (n − l)osfj1,...,jl−1
< (n − l + 1)osfj1,...,jl

⇐⇒ (n − l)osfj1,...,jl−1
< (n − l + 1)(osfj1,...,jl−1

− sfjl )

⇐⇒ (n − l + 1)sfjl < osfj1,...,jl−1

⇐⇒ (n − l + 1)sfjl+
∑

i=j1,...,jl−1

sfi < 1.

We know that sfi < 1/n, i = j1, . . . , jk. Thus, the above equation holds, and therefore
V(SPBj1,...,jl−1 ∩ OB) < V(SPBj1,...,jl ∩ OB) if l ≤ k. �
Corollary 4 The largest pruneable box inside OB is SPBj1,...,jk if obU

i < cpbU
i for all

i ∈ {j1, . . . , jk}, and only for those.

4 Integrating the pruning method into the interval B&B algorithm

The Baumann Tent Pruning Dividing (BTPD) method can be incorporated into Algo-
rithm 1 by changing the Division Rule in line 6 by a call to Algorithm 2.

The BTPD method will prune-divide the current box or just divide it depend-
ing on several factors. Firstly, a Pruning Index (PI) of the best PB, i.e. the relative
volume/number of new boxes is calculated. If PI · nn is smaller than a given input
parameter α, the normal division rule is applied, avoiding the unpromising pruning of
PB (see Algorithm 2 line 11). The multiplication by nn comes from the fact that the
volume of CPB is nn-part of the volume of BPR, thus, to give a shifted PB a chance to
be pruned, we multiply the Pruning Index by nn. Secondly, if the box is badly shaped,
i.e. the ratio between the minimal and maximal width is less than a parameter β, we
just divide it by the normal division rule in order to avoid needle shapes. Finally, the
third condition is to use the normal division rule if the minimal width of the box is
less than ε in order to avoid the division of the dimensions in which the termination
criterion are fulfilled. The second and third conditions are controlled in Algorithm 3
which returns -1 if either of them is satisfied (See Algorithm 2 lines 8 and 9).
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If the previous conditions are not satisfied, Algorithm 2 will prune the PB from the
current box (and so divide it too) if PI · nn > α (See Algorithm 2, lines 11–21).

In steps 2–3 of Algorithm 2 we check whether the box is inside the pruneable region
in order to discard the box if possible. Otherwise, if PR is inside the box, only CPB
can be pruned, and so PI (Pruning Index) is computed by the relative volume/number
of new boxes.

If CPB can be shifted, we call the ChoosePB procedure (See Algorithm 3) which
returns the number of shifted directions, the best PB, and the value of PI.

Algorithm 2 The Baumann Tent Pruning Division method (BTPD)

Funct BTPD(X, GX, b, F(b), f̃ , α)

1. OB = X − b; PR = f̃−FL(b)
GX

2. in = 1 − ∑n
i=1

OBL
i

PRL
i

3. if (in > 0) The box is inside the pruneable region,
4. return so we can discard the whole box
5. else if (PR ⊆ OB)
6. PB = PR/n; PI = Vol(PB)/(2n · Vol(OB)); nshift = 0;
7. else
8. nshift = ChoosePB(OB, PR, PB, PI)
9. if (nshift == -1) The box is badly shaped and the new

10. DivideBox(X); return subboxes would inherit it
11. if (PI · nn > α) It is worth pruning
12. for (i = 1; i ≤ n; i + +)

13. di = min{OBL
i − PBL

i , PBU
i − OBi

U} To obtain more cube like
14. sort = Sort(d); Y = X; j=1; boxes the widths of the fixed
15. for (k = 1; k ≤ n; k + +) new sides are ordered.
16. i = sortk;
17. if (ci + PBL

i > XL
i )

18. Xj = Y; Xj
i = [XL, ci + PBL

i ]; j++ Generating
19. if (ci + PBU

i < XU
i ) new boxes

20. Xj = Y; Xj
i = [ci + PBU

i , XU ]; j++
21. Yi = ci + PBi;
22. else
23. DivideBox(X); return

Procedure ChoosePB decides which directions should be shifted in order to obtain
the best PB. It starts with a call to GetShiftFactorAndVol procedure (see Algorithm
4) where the relative volume vol0 is calculated by shifting only in the dimensions
where CPB is outside the current box. PI of SPB and the shifting factors are also
calculated. The volume vol0 is the maximal relative volume of any PB (see Corollary
4). Variable out returns the number of directions where CPB was outside the current
box and therefore shifted.

Algorithm 3 checks if more shifting is possible. Thus, the sf vector is sorted in
increasing order. Since the first out directions are already shifted, only the remaining
ones are checked (see lines 7–13). Step 9 computes a new relative volume from the
previous one (see Remark 4). If the relative volume/number of new boxes is better
than the previous PI, we update it. Finally, Steps 15–18 compute the best PB, and
return. If the best PB has a high enough PI, Algorithm 2 computes the new boxes in
Steps 12–21 in a way that more cube like boxes are generated.
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Algorithm 3 Choose the best PB
Funct ChoosePB(OB, PR, PB)

1. n = Dimension(OB);
2. if (!GetShiftFactorAndVol(OB, PR, sf, vol0, out)) The box is badly shaped
3. return −1; and the new boxes would inherit it
4. sort = Sort(−sf );
5. nshift = out; nshift will be the number of directions to shift
6. PI = vol0/(2n − 2out); PI is the pruning index
7. for (k = out + 1; k < n; k + +)

8. if (osf − sf (sortk) < 0) break ; We cannot shift more

9. volk = volk−1
sf (sortk)

osf

(
osf − sf (sortk)

osf

)n−k (n − k + 1)n−k+1

(n − k)n−k
;

10. if (volk/(2n − 2k) ≥ PI)
11. osf− = sf (sortk);
12. PI = volk/(2n − 2k);
13. nshift = k;
14. else break ;
15. for (i = 1; i <= nshift; i + +) In the shifted dimensions
16. PB(sorti) = OB(sorti); PBi = OBi,
17. for (i = nshift + 1; i ≤ n; i + +) otherwise
18. PB(sorti) = osf ∗ PR(sorti)/(n − nshift); use (20).
19. return nshift;

Algorithm 4 Compute the vector sf and the maximal volume of SPB
Funct GetShiftFactorAndVol(OB, PR, sf, vol0, out)

1. wmin = min{w(OB1), . . . , w(OBn)}; The minimal width
2. osf = 1.0; vol0 = 1.0; vol0 is the maximal relative volume of any PB
3. for (i = 1; i ≤ n; i + +)

4. if (wmin/w(OBi) > β && w(OBi) > ε) It is not badly shaped
5. sfi = obi

L/pri
L;

6. if (sfi > 1/n)

7. vol0∗ = w(PRi/n)/w(OBi);
8. else We shift the dimensions
9. out + +; where CPB is outside by default

10. if (prU
i > −prL

i )

11. vol0∗ = obU
i (1 − prL

i /prU
i ); To avoid overflow

12. else vol0∗ = obL
i (prU

i /prL
i − 1); and underflow

13. osf− = sf(i);
14. else It is badly shaped
15. if (w(PRi) == ∞) we cannot divide in this direction using any PB
16. return 0;
17. else sfi = 100; To avoid shifting in this direction
18. if (out > 0) If there are already shifted dimensions
19. vol0∗ = (n/(n − out))n−out ;
20. return 1;

We used a naive grid search algorithm to obtain good values for the parameters α

and β of the algorithm. In fact, the search was performed in only one parameter at
a time, and we used a loop to optimize both parameters in turns until it converges
to a local optima. The optimization was done for two objectives: for the total effort
(summing up the number of evaluations for all the problems) and for the average effi-
ciency rate (by efficiency rate we mean the number of evaluations of the Algorithm
MIGO divided by the the number of evaluations of the Algorithm MIGO with the
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BTPD for a problem). In the first case α = 1.45 and β = 0.028 while in the second
case α = 0.38 and β = 0.027. The results for the “badly shaped” parameter β are
very similar in both cases. This happens because this parameter has an effect only on
a few instances. However, the parameter PI is quite different, because most of the
problems can be solved very easily, while only a few problems take more time and
computational effort. Thus, when optimizing the total number of evaluations the fast
problems do not really count in the result. This fact is bad news because one cannot
decide the best value for a new problem beforehand. On the other hand, the results
are not so different for both settings, as one can see it in the next section.

5 Results and conclusions

Experiments have been carried out with a dual processor Intel Xeon 2.6 GHz with
1 GB memory. The programs were compiled with g++ under Linux using automatic
differentiation of the C-XSC library [8] and the interval arithmetic of the Profil/Bias
libraries [10]. The results were obtained by running Algorithm MIGO (see Sect. 1)
without and with the BTPD method. In order to check the level of improvement of
the computational cost, our experiments have been carried out in a wide set of test
functions well known in Global Optimization literature.

We present two setups for the BTPD method, which correspond to the two kinds of
optimal settings of the parameters α and β. These settings were optimized taking into
account the computational effort taken by the algorithms. By computational effort we
mean #F +n#G, where #F and #G are the number of inclusion function and inclusion
gradient evaluations, respectively. Denoting by E0 the effort of MIGO algorithm,
and by E the effort of MIGO with BTPD, the optimization was done with respect to
the total effort (summing up the effort for all the problems) and with respect to the
average efficiency rate (the average of E0/E for all the problems). They will be called
setting 1 and 2, respectively. In Tables 1 and 2 the following notation has been used
for column headers:

Problem: The name of the test function.
Ref.: Reference where the problem is described.
n: Dimension of the problem.
ε: Termination criterion (w(X) ≤ ε).
E0: Computational effort of MIGO.
E1: Effort of MIGO with BTPD with α = 1.45 and β = 0.028.
E2: Effort of MIGO with BTPD with α = 0.38 and β = 0.027.
T0: Computational time in seconds of MIGO.
T1: Time of MIGO with BTPD with α = 1.45 and β = 0.028.
T2: Time of MIGO with BTPD with α = 0.38 and β = 0.027.

For every problem we have chosen a termination criterion that ensures successful
termination within one hour. The data in Table 1 show that the new pruning method
reduced the computational effort out of the 42 test problems in 25 and 26 cases for
setting 1 and 2, respectively. Table 1 shows that the computational cost is the same
(without and with the BTPD method) in 12 and 11 problems for setting 1, 2, respec-
tively, and for 5 problems the effort is greater when the new pruning technique is
applied (for both settings). The worst results were obtained for the Rosenbrock-10
function (see Table 2). The reasons can be that the use of the BTPD method changes
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Table 1 Computational efficiency comparison

Problem n ε E0 E0/E1 E0/E2

Goldstein-Price 2 10−10 33694 1.49 1.54
Six-Hump-Camel-Back 2 10−10 3592 1.26 1.31
Three-Hump-Camel-Back 2 10−10 2328 1.15 1.22
Griewank-2 2 10−10 1238 1.00 1.00
Branin-2 2 10−10 2718 1.01 1.01
Rosenbrock 2 10−10 1319 1.04 1.05
Simplified-Rosenbrock 2 10−10 1319 1.04 1.05
Price 2 10−10 3200 1.00 1.00
Treccani 2 10−10 1506 1.00 1.00
Matyas 2 10−10 2070 1.16 1.16
EX1 2 10−10 468 1.01 0.97
Branin 2 10−10 5527 1.02 1.03
Ratz-4 2 10−10 6210 1.08 1.12
Henriksen-Madsen-3 2 10−10 8631 1.01 1.02
Beale 2 10−10 2755 1.02 1.03
Chichinadze 2 10−10 597 1.00 1.03
Levy-13 2 10−10 281 1.04 1.04
Neumaier3-2 2 10−10 2718 1.29 1.29
Schwefel-2.1 2 10−10 3121 0.97 0.97
Levy-3 2 10−10 5492 1.00 1.00
Levy-5 2 10−10 974 1.00 1.00
Henriksen-Madsen-4 3 10−10 26725 1.02 1.00
Schwefel-3.1 3 10−10 527 1.08 1.08
Hartman-3 3 10−10 4715 1.13 1.18
Levy-8 3 10−10 475 1.03 1.03
Shekel-5 4 10−10 1311 1.00 1.00
Shekel-7 4 10−10 1376 1.00 1.00
Shekel-10 4 10−10 1431 1.00 1.00
Rosenbrock-5 5 10−10 17921 0.88 0.87
Hard-Problem 6 10−10 25 1.00 1.00
Hartman-6 6 10−10 17796 0.97 0.94
Levy-18 7 10−10 1800 1.12 1.12
Levy-12 10 10−10 3111 1.08 1.08
Rosenbrock-10 10 10−10 923896 0.57 0.54
Griewank-10 10 10−10 5361 1.00 1.00

Ratz-5 3 10−3 633508 1.18 1.18
Ratz-6 5 10−3 1201476 1.16 1.16
Ratz-7 7 10−3 1900512 1.14 1.14
Ratz-8 9 10−3 3183190 1.31 1.31
Kowalik 4 10−4 10086339 2.75 2.59
EX2 5 10−6 13851668 2.72 2.82
Rastrigin-10 10 10−6 2319366 0.94 0.94

Average 816007 1.83 1.82
Average of ratios 1.13 1.14
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Table 2 Computational time comparison

Problem n Ref. ε T0 T0/T1 T0/T2

Goldstein-Price 2 [18] 10−10 0.31 1.15 1.24
Six-Hump-Camel-Back 2 [18] 10−10 0.03 1.50 1.50
Three-Hump-Camel-Back 2 [18] 10−10 0.01 1.00 1.00
Griewank-2 2 [18] 10−10 0.02 1.00 1.00
Branin-2 2 [18] 10−10 0.05 1.25 1.00
Rosenbrock 2 [4] 10−10 0.01 1.00 1.00
Simplified-Rosenbrock 2 [4] 10−10 0.00 1.00 1.00
Price 2 [5] 10−10 0.02 1.00 1.00
Treccani 2 [4] 10−10 0.00 1.00 1.00
Matyas 2 [19] 10−10 0.00 1.00 1.00
EX1 2 [3] 10−10 0.00 1.00 1.00
Branin 2 [18] 10−10 0.06 1.00 1.00
Ratz-4 2 [17] 10−10 0.10 1.11 1.25
Henriksen-Madsen-3 2 [7] 10−10 0.43 1.00 0.98
Beale 2 [19] 10−10 0.02 1.00 1.00
Chichinadze 2 [5] 10−10 0.01 1.00 1.00
Levy-13 2 [19] 10−10 0.00 1.00 1.00
Neumaier3-2 2 [14] 10−10 0.01 1.00 1.00
Schwefel-2.1 2 [19] 10−10 0.02 0.67 0.67
Levy-3 2 [19] 10−10 0.29 1.00 0.97
Levy-5 2 [19] 10−10 0.05 0.83 1.00
Henriksen-Madsen-4 3 [7] 10−10 1.87 0.97 0.95
Schwefel-3.1 3 [19] 10−10 0.01 1.00 1.00
Hartman-3 3 [18] 10−10 0.08 1.14 1.00
Levy-8 3 [19] 10−10 0.03 1.50 3.00
Shekel-5 4 [18] 10−10 0.03 1.50 1.50
Shekel-7 4 [18] 10−10 0.03 1.00 1.00
Shekel-10 4 [18] 10−10 0.04 1.00 1.00
Rosenbrock-5 5 [14] 10−10 0.16 0.70 0.70
Hard-Problem 6 [17] 10−10 0.00 1.00 1.00
Hartman-6 6 [18] 10−10 0.38 0.97 0.93
Levy-18 7 [19] 10−10 0.08 1.60 1.60
Levy-12 10 [19] 10−10 0.23 1.35 1.21
Rosenbrock-10 10 [14] 10−10 11.94 0.47 0.45
Griewank-10∗ 10 [18] 10−10 0.20 0.91 0.91

Ratz-5 3 [17] 10−3 125.24 0.94 0.95
Ratz-6 5 [17] 10−3 166.79 0.95 0.95
Ratz-7 7 [17] 10−3 226.56 1.01 0.97
Ratz-8 9 [17] 10−3 582.01 2.18 2.18
Kowalik 4 [19] 10−4 251.29 2.51 2.34
EX2 5 [3] 10−6 279.71 2.18 2.31
Rastrigin-10 10 [14] 10−6 87.74 0.82 0.81

Average 41.33 1.49 1.48
Average of ratios 1.12 1.15

∗ The searching region of this problem is modified to [−599, 601]10
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the set of evaluated points that improve the f̃ value, and that the pruning method
produces the generation of too many subproblems. For the original Griewank-10
problem we have obtained an extreme speed-up (64.05) when the parameter α was
very small, but it was a bit slower when the parameter was higher. The reason is
that the minimizer point is in the center of the search region, therefore, when only
traditional division is used, the minimizer point is shared by several boxes that can-
not be rejected. The asymmetric division generated by the BTPD method avoids this
problem, and smaller α provides a greater possibility to do it sooner. This problem
was overwhelming the results of the parameter optimization as well, therefore we
slightly modified the problem by changing the searching region from [−600, 600]10 to
[−599, 601]10.

The average efficiency rate is 1.13 and 1.14, while the efficiency rate on the total
effort is 1.83 and 1.82 for setting 1 and 2, respectively. This clearly shows that on
harder problems we can achieve better results, and it can also be seen when focusing
on the indicators of the lower part of the table. We can see that the average results
obtained by the two settings are almost equal, and the individual results do not differ
too much for the two settings either, therefore in general, any value in the same order
of magnitude will serve, although will not be the optimal setting for the given problem.

Examining the results of the time comparison we can see that the time ratio is
always smaller than the corresponding efficiency rate, due to the time spent on the
calculations of the best pruneable box. For instance, the Ratz-5 and Ratz-6 problems
need more time with BTPD method (relatively small difference compared to the
others) even when the effort is less. Therefore, we can conclude that the application
of the new pruning method needs a computational effort that is not negligible but in
average, its application for hard to solve problems improves the overall running time.

Future work has to be carried out to tune the variable α accordingly to the problem
at hand, or even to every box depending on how promising the actual box is to contain
the global minimum. As it was shown in [2], every subproblem needs a different level
of division that has to be taken into account to save computations.

6 Summary

This paper investigates the non-suggested possibility to reject areas from
multi-dimensional problems based on a generalized construction of a linear lower
bounding function using derivative information. The intersection of the linear lower
bounding function and the plane of the best upper bound of the minimum gives the
rejectable region. The main problem to deal with this is that when interval arithmetic
is used to bound the function values in a given multi-dimensional interval, the newly
generated sets, by rejecting some area, should be intervals. Therefore, the number of
generated subproblems can be great, or the discarded area will be small. This article
shows that the use of the Baumann point as a building point for the linear lower
bounding function helps to avoid a complicated case analysis and to easily decide
when it is worth applying the new pruning/division (BTPD) method and how to do
it. The decision to apply or not to apply the new (BTPD) method is based on static
parameters that determine the maximum number of generated subproblems and the
minimum rejected area, avoiding needle shapes. The presented results show that even
with these static settings, the performance of the algorithm is improved, and mostly
for hard to solve problems. Future research may contribute to establishing better
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and dynamic settings to reduce the computational cost of the presented algorithm
even more.
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